Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Methods Mol Biol ; 2751: 247-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265722

RESUMEN

Conventional systems used to tag and transfer symbiotic plasmids (pSyms) of rhizobial strains are based in mutagenesis with transposons. In those processes, numerous clones must be analyzed to find one of them with the transposon inserted in the pSym. Following this strategy, the insertion might interrupt a gene that can affect the symbiotic phenotype of the bacteria tagged. Here, we have developed a new system based in homologous recombination that generates Sinorhizobium fredii strains with pSyms tagged by the insertion of a suicide vector which harbor a truncated copy of S. fredii HH103 nodZ gene, a mob site, and a kanamycin-resistant gene. When it is introduced by conjugation in a S. fredii strain, the vector integrates in pSym by only one recombination event. This pSym tagged can be transferred in matting experiments to other strains in the presence of a helper plasmid. Following this method, we have tagged several strains and transferred their pSyms to a recipient strain demonstrating the potential of this new system.


Asunto(s)
Sinorhizobium fredii , Neoplasias Cutáneas , Humanos , Células Clonales , Recombinación Homóloga , Kanamicina , Plásmidos
2.
Heliyon ; 9(11): e21230, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045135

RESUMEN

Garlic (Allium sativum) possesses healing properties for diseases like systemic arterial hypertension, cancer and diabetes, among others. Its main component, allicin, binds to the Transient Receptor Potential Vanilloid Type 1 (TRPV1). In this study, we investigated TRPV1's involvement in the regulation of various molecules at the systemic and aortic levels in Wistar rats treated with bacterial lipopolysaccharide (LPS) and garlic to activate the receptor. The experimental groups were as follows: 1) Control, 2) LPS, 3) Garlic, and 4) LPS + Garlic. Using Uv-visible spectrophotometry and capillary zone electrophoresis, we measured the levels of nitric oxide (NO), biopterins BH2 and BH4, total antioxidant capacity (TAC) and oxidizing capacity (OXCA). We also analyzed molecules related to vascular homeostasis such as angiotensin Ang 1-7 and Ang II, as well as endothelin ET-1. In addition, we assessed the inflammatory response by determining the levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and galectin-3 (GTN-3). For cell damage assessment, we measured levels of malondialdehyde (MDA), malonate (MTO) and 8-hydroxy-2-deoxyguanosine (8HO2dG). The results showed that LPS influenced the NO pathway at both systemic and aortic levels by increasing OXCA and reducing TAC. It also disrupted vascular homeostasis by increasing Ang-II and ET-1, while decreasing Ang1-7 levels. IL-6, TNFα, GTN-3, as well as MDA, MTO, and 8HO2dG were significantly elevated compared to the control group. The expression of iNOS was increased, but TRPV1 remained unaffected by LPS. However, garlic treatment effectively mitigated the effects of LPS and significantly increased TRPV1 expression. Furthermore, LPS caused a significant decrease in calcitonin gene-related peptide (CGRP) in the aorta, which was counteracted by garlic treatment. Overall, TRPV1 appears to play a crucial role in regulating oxidative stress and the molecules involved in damage and inflammation induced by LPS. Thus, studying TRPV1, CGRP, and allicin may offer a potential strategy for mitigating inflammatory and oxidative stress in sepsis.

3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982395

RESUMEN

Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs' signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.


Asunto(s)
Síndrome Metabólico , Daño por Reperfusión , Ratas , Animales , Factor Natriurético Atrial/metabolismo , PPAR alfa/agonistas , Clofibrato/farmacología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Péptidos Natriuréticos , Isquemia , Arritmias Cardíacas , Inflamación/tratamiento farmacológico
4.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293383

RESUMEN

Deodorized garlic (DG) may favor the activity of the antioxidant enzymes and promote the synthesis of hydrogen sulfide (H2S). The objective was to test if DG favors an increase in H2S and if it decreases the oxidative stress caused by lipopolysaccharide (LPS) in rat hearts. A total of 24 rats were divided into 4 groups: Group 1 control (C), Group 2 LPS, Group 3 DG, and Group 4 LPS plus DG. The cardiac mechanical performance (CMP), coronary vascular resistance (CVR), and oxidative stress markers, such as total antioxidant capacity (TAC), glutathione (GSH), selenium (Se), lipid peroxidation (LPO), thiols, hydrogen sulfide (H2S), and the activities and expressions of thioredoxin reductase (TrxR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST), cystathionine synthetase (CBS), cystathionine γ-lyase (CTH), iNOS, and eNOS-p, were analyzed in the heart. Infarct zones in the cardiac tissue were present (p = 0.01). The CMP and CVR decreased and increased (p ≤ 0.05), TAC, GSH, H2S, NO, thiols, and GST activity (p ≤ 0.01) decreased, and LPO and iNOS increased (p ≤ 0.05). The activities and expressions of TrxR, GPx, eNOS-p, CTH, and CBS (p ≤ 0.05) decreased with the LPS treatment; however, DG normalized this effect. DG treatment decreases heart damage caused by LPS through the cross-talk between the H2S and NO systems.


Asunto(s)
Ajo , Sulfuro de Hidrógeno , Selenio , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Ajo/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Lipopolisacáridos/farmacología , Estrés Oxidativo , Selenio/farmacología , Compuestos de Sulfhidrilo/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transferasas/metabolismo
5.
PPAR Res ; 2021: 8895376, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505452

RESUMEN

Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.

6.
PPAR Res ; 2020: 8894525, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354204

RESUMEN

The activation of the renin-angiotensin system (RAS) participates in the development of metabolic syndrome (MetS) and in heart failure. PPAR-alpha activation by fenofibrate reverts some of the effects caused by these pathologies. Recently, nonclassical RAS components have been implicated in the pathogenesis of hypertension and myocardial dysfunction; however, their cardiac functions are still controversial. We evaluated if the nonclassical RAS signaling pathways, directed by angiotensin III and angiotensin-(1-7), are involved in the cardioprotective effect of fenofibrate during ischemia in MetS rats. Control (CT) and MetS rats were divided into the following groups: (a) sham, (b) vehicle-treated myocardial infarction (MI-V), and (c) fenofibrate-treated myocardial infarction (MI-F). Angiotensin III and angiotensin IV levels and insulin increased the aminopeptidase (IRAP) expression and decreased the angiotensin-converting enzyme 2 (ACE2) expression in the hearts from MetS rats. Ischemia activated the angiotensin-converting enzyme (ACE)/angiotensin II/angiotensin receptor 1 (AT1R) and angiotensin III/angiotensin IV/angiotensin receptor 4 (AT4R)-IRAP axes. Fenofibrate treatment prevented the damage due to ischemia in MetS rats by favoring the angiotensin-(1-7)/angiotensin receptor 2 (AT2R) axis and inhibiting the angiotensin III/angiotensin IV/AT4R-IRAP signaling pathway. Additionally, fenofibrate downregulated neprilysin expression and increased bradykinin production. These effects of PPAR-alpha activation were accompanied by a reduction in the size of the myocardial infarct and in the activity of serum creatine kinase. Thus, the regulation of the nonclassical axis of RAS forms part of a novel protective effect of fenofibrate in myocardial ischemia.

7.
PPAR Res ; 2019: 1371758, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863432

RESUMEN

Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to act as insulin sensitizer and exert cardiovascular actions. In this work, we hypothesized that RGZ exerts a PPARγ-dependent regulation of blood pressure through modulation of angiotensin-converting enzyme (ACE)-type 2 (ACE2)/angiotensin-(1-7)/angiotensin II type-2 receptor (AT2R) axis in an experimental model of high blood pressure. We carried on experiments in normotensive (Sham) and aortic coarctation (AoCo)-induced hypertensive male Wistar rats. Both sham and AoCo rats were treated 7 days with vehicle (V), RGZ (5 mg/kg/day), or RGZ+BADGE (120 mg/kg/day) post-coarctation. We measured blood pressure and vascular reactivity on aortic rings, as well as the expression of renin-angiotensin system (RAS) proteins. We found that RGZ treatment in AoCo group decreases blood pressure values and improves vascular response to acetylcholine, both parameters dependent on PPARγ-stimulation. RGZ lowered serum angiotensin II (AngII) but increased Ang-(1-7) levels. It also decreased 8-hydroxy-2'-deoxyguanosine (8-OH-2dG), malondialdehyde (MDA), and improved the antioxidant capacity. Regarding protein expression of RAS, RGZ decreases ACE and angiotensin II type 1 receptor (AT1R) and improved ACE2, AT2R, and Mas receptor in AoCo rats. Additionally, an in silico analysis revealed that 5'UTR regions of RAS and PPARγ share motifs with a transcriptional regulatory role. We conclude that RGZ lowers blood pressure values by increasing the expression of RAS axis proteins ACE2 and AT2R, decreasing the levels of AngII and increasing levels of Ang-(1-7) in a PPARγ-dependent manner. The in silico analysis is a valuable tool to predict the interaction between PPARγ and RAS.

8.
Australas J Dermatol ; 60(3): e223-e226, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30790279

RESUMEN

Calciphylaxis is a syndrome of cutaneous ischaemic necrosis and ulceration due to arteriolar calcification with subsequent thrombosis, which rarely presents in patients without terminal kidney disease. Recently, several reports of coumarins-associated calciphylaxis have stressed the relevance of anticoagulant therapy as an important risk factor for the development of this condition. We report five cases of acenocoumarol-associated, biopsy-proven calciphylaxis in women aged between 64 and 92 years. The drug had been prescribed for atrial fibrillation and was taken without interruption from 14 to 224 months. Lesions were present for months in all cases and were resistant to multiple therapeutic options, but they resolved only with simple wound care measures 6-14 months after changing the anticoagulant therapy.


Asunto(s)
Acenocumarol/efectos adversos , Anticoagulantes/efectos adversos , Calcifilaxia/inducido químicamente , Deprescripciones , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/tratamiento farmacológico , Femenino , Humanos , Persona de Mediana Edad
9.
Molecules ; 24(2)2019 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642049

RESUMEN

Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.


Asunto(s)
Clofibrato/farmacología , Hipolipemiantes/farmacología , Inflamación/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Remodelación Ventricular/efectos de los fármacos , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/metabolismo , PPAR alfa/metabolismo , Roedores
10.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29135932

RESUMEN

Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co) and Rosmarinus officinalis (Ro) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI-Ro); (d) Co extract-treated myocardial infarction (MI-Co); or (e) Ro+Co-treated myocardial infarction (MI-Ro+Co). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1-7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.


Asunto(s)
Fármacos Cardiovasculares/uso terapéutico , Crataegus/química , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Rosmarinus/química , Angiotensinas/farmacología , Animales , Biomarcadores/metabolismo , Bradiquinina/farmacología , Fármacos Cardiovasculares/farmacología , Cromatografía Líquida de Alta Presión , Pruebas de Función Cardíaca , Hemodinámica/efectos de los fármacos , Masculino , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miocardio/ultraestructura , Óxido Nítrico Sintasa de Tipo III/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ratas Wistar , Vasoconstricción/efectos de los fármacos
13.
Molecules ; 22(1)2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-28036029

RESUMEN

Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.


Asunto(s)
Angiotensina II/metabolismo , Antioxidantes/uso terapéutico , Fenofibrato/uso terapéutico , Resistencia a la Insulina/fisiología , Síndrome Metabólico/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Catalasa/sangre , Modelos Animales de Enfermedad , Insulina/sangre , Masculino , NADPH Oxidasa 4 , NADPH Oxidasas/sangre , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Ratas Wistar , Superóxido Dismutasa/sangre , Superóxido Dismutasa-1/sangre , Triglicéridos/sangre
14.
Can J Physiol Pharmacol ; 94(6): 634-42, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27050838

RESUMEN

Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1ß, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/metabolismo , PPAR alfa/biosíntesis , Animales , Clofibrato/farmacología , Clofibrato/uso terapéutico , Regulación de la Expresión Génica , Masculino , Infarto del Miocardio/tratamiento farmacológico , PPAR alfa/genética , Distribución Aleatoria , Ratas , Ratas Wistar
15.
Pharmacol Rep ; 68(4): 692-702, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27110876

RESUMEN

BACKGROUND: Arterial high blood pressure is a risk factor for target organ damage; the most susceptible organs are the arteries, brain, kidneys, and heart. The damage mechanisms include oxidative stress and renin-angiotensin system (RAS) overactivity. Therefore, our aim was to study whether clofibrate-induced peroxisome proliferator-activated receptor-alpha (PPAR-α) stimulation is able to prevent alterations in cardiac functioning derived from RAS overstimulation in the left ventricle of rats with hypertension secondary to aortic coarctation and to improve antioxidant defenses. METHODS: Male Wistar rats were assigned to Control (Sham)- or aortic coarctation-surgery and further divided to receive (1 or 21 days) vehicle, clofibrate (100mg/kg), captopril (20mg/kg), or clofibrate+captopril. The left ventricle was obtained to measure: angiotensin II and -(1-7), AT1 and AT2 receptors, angiotensin converting enzyme (ACE)-1 and -2, and MAS receptor; the activity and expression of superoxide dismutase, catalase, endothelial nitric oxide synthase, the production of reactive oxygen species (ROS) and peroxidated lipids; as well as ex vivo cardiac functioning. RESULTS: Clofibrate decreased angiotensin II, AT1 receptor and ACE expression, and raised angiotensin-(1-7), AT2 receptor, ACE-2 expression, superoxide dismutase and endothelial nitric oxide synthase participation. These effects promoted lower coronary vascular resistance and improved mechanical work compared to aortic coarctated vehicle-treated rats. CONCLUSIONS: Clofibrate-induced PPAR-α stimulation changes the angiotensin II receptor profile, favors the ACE2/angiotensin-(1-7)/AT2 receptor axis decreasing the vasoconstrictor environment, activates the antioxidant defense, and facilitates endothelial nitric oxide synthase activity favoring vasodilation. This may represent a protection for the stressed heart.


Asunto(s)
Antioxidantes/farmacología , Clofibrato/farmacología , Ventrículos Cardíacos/fisiopatología , Hipertensión/fisiopatología , PPAR alfa/agonistas , Vasodilatación/efectos de los fármacos , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Coartación Aórtica/complicaciones , Coartación Aórtica/fisiopatología , Captopril/farmacología , Catalasa/metabolismo , Sinergismo Farmacológico , Peroxidación de Lípido/efectos de los fármacos , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Superóxido Dismutasa/metabolismo
16.
Am J Dermatopathol ; 38(7): e93-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26959695

RESUMEN

Vemurafenib has proved to be useful in the treatment of patients with unresectable or metastatic melanoma harboring the BRAF-V600E mutation, with better rates of overall and progression-free survival than previous treatments. Adverse cutaneous effects, such as alopecia, pruritus, photosensitivity reactions, verrucous keratosis, keratoacanthomas, or squamous cell carcinomas, have been described. Thirty cases of vemurafenib-associated panniculitis are available in the literature with variable clinical relevance. Only 9 of them exhibited definitive evidence of neutrophilic panniculitis. They all consist of multiple lesions, usually located in the lower limbs. Histopathologically, they have been described as predominantly neutrophilic, lymphocytic, or mixed, more commonly with lobular location. We report an additional case of neutrophilic panniculitis in a 45-year-old woman treated with vemurafenib for metastatic melanoma, presenting as a single lesion on his right leg. The lesion resolved spontaneously and did not need treatment reduction. The presentation of this condition with a single lesion is particularly challenging. Recognition of this association is important given the increasing use of vemurafenib and the potential implications of treatment withdrawal.


Asunto(s)
Antineoplásicos/efectos adversos , Indoles/efectos adversos , Melanoma/tratamiento farmacológico , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Paniculitis/inducido químicamente , Neoplasias Cutáneas/tratamiento farmacológico , Sulfonamidas/efectos adversos , Biopsia , Femenino , Humanos , Extremidad Inferior , Melanoma/secundario , Persona de Mediana Edad , Neutrófilos/patología , Paniculitis/patología , Neoplasias Cutáneas/patología , Vemurafenib
17.
J Cardiovasc Pharmacol ; 65(5): 430-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25658458

RESUMEN

We have recently demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) stimulation lowers the production of angiotensin II while increasing the production of Ang-(1-7), both in cardiac and plasmatic level. This stimulation improves nitric oxide bioavailability, preserving cardiac histologic features and functioning. Based on these results, we decided to study the effect of PPARα stimulation on renin-angiotensin system components of ischemic myocardium. Male Wistar rats (weighing 300-350 g) were assigned to the following groups: (1) sham, (2) myocardial ischemia vehicle-treated (MI-V), and (3) myocardial ischemia clofibrate-treated. Expression of the angiotensin-converting enzyme increased during ischemia, whereas clofibrate-treated group remained comparable to control. Activation of the PPARα receptor stimulated the expression of angiotensin-converting enzyme-2; while the activity of this enzyme was increased in MI-V, clofibrate inhibited any change. The concentration of bradykinin and phospho-Akt(SER473) in homogenate increased in the animals treated with the drug. Mas receptor expression increased in MI-V rats. In conclusion, stimulation of PPARα by clofibrate prevents an increase in the activity of renin-angiotensin system and promotes the production of vasodilator substances.


Asunto(s)
Clofibrato/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , PPAR alfa/agonistas , Sistema Renina-Angiotensina/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Animales , Bradiquinina/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , PPAR alfa/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Receptores Acoplados a Proteínas G/metabolismo , Serina , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos
18.
Eur J Pharmacol ; 627(1-3): 185-93, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-19857485

RESUMEN

Peroxisome proliferator activated receptors (PPARs) are a family of nuclear receptors that, upon activation with selective ligands, work as transcription factors. Recently, these have been related with the cardiovascular system. Our aim was to study PPARalpha-stimulation and its effects on blood pressure in rats with aortic coarctation, and to explore the role of the antioxidant system. Male Wistar rats (250-280 g) were distributed into the following groups: 1) sham; 2) aortic coarctated-vehicle-treated (AoCo-V), and 3) AoCo-clofibrate (100mg/kg) treated (AoCo-C). Rats were treated for 1 or 21 days. Clofibrate lowered blood pressure in both 1- and 21-day treatments. Renal reactive oxygen species increased after 1 day in AoCo-V, while clofibrate prevented this effect. Superoxide dismutase (SOD)-1 expression increased 3.6-fold upon PPARalpha stimulation (1 day) and returned to normal values by day 21. SOD-1 activity increased slightly in response to clofibrate. Renal activity of catalase increased in AoCo-C (1 day) and returned to normal (21 days). eNOS expression was not modified acutely (1 day) but increased at 21 days of treatment with clofibrate. Angiotensin II AT(1)-receptor expression as well as angiotensin II decreased in clofibrate-treated rats, while angiotensin II AT(2)-receptor expression increased, in both treatment periods. Angiotensin-(1-7) increased at 21 days. Our results suggest that in the early development of AoCo-induced hypertension, stimulation of PPARalpha increases the antioxidant defenses, leading to improvement in endothelial factors while in the sub-chronic phase (21 days), eNOS and angiotensin II receptors appear to play major roles in controlling blood pressure.


Asunto(s)
Presión Sanguínea , PPAR alfa/metabolismo , Angiotensina II/metabolismo , Animales , Antioxidantes/farmacología , Coartación Aórtica/complicaciones , Presión Sanguínea/efectos de los fármacos , Clofibrato/administración & dosificación , Clofibrato/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión/etiología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidorreductasas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de Angiotensina/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...